Final Practice

1) Find $\int_{0}^{\frac{\pi}{4}} e^{\cos ^{2}(x)} \sin (x) \cos (x) d x$
2) $\frac{d}{d x} \int_{x^{2}}^{\ln (x)}\left(4 t+e^{t}\right) d t$
3) The velocity of a bullet from a rifle can be approximated by $v(t)=6400 t 2-6505 t+$ 2686, where t is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first half-second after the shot: $0 \leq t \leq 0.5$. What is the total distance the bullet travels in 0.5 sec ?
4) Find the area bounded by $y=x^{2}$ and $y=\sqrt{x}$. Also find the volume of the solid rotated along the x-axis.
5) Find the length of arc of y for $x=3-\sqrt{y}$ from $y=0$ to $y=4$.
6) $\int e^{x} \sin x d x$
7) $\int \sin ^{2}(x) \cos ^{2}(x) d x$
8) $\int_{1}^{4} \frac{\ln \left(\frac{1}{x}\right)}{x} d x$
9) Approximate the integral $\int_{1}^{2} \sqrt{x^{5}+2} d x$ using Simpson's Rule using for subintervals.
10) Suppose a rock falls from rest from a height of 100 meters and the only force acting on it is gravity. Find an equation for the velocity $\mathrm{v}(\mathrm{t})$ as a function of time, measured in meters per second.
11) Solve $y^{\prime}=y\left(x^{2}+1\right)$
12) Solve $x y^{\prime}=y(x-2)$, with initial value $y(1)=3$
13) Solve the first order ODE $y^{\prime}=x \ln (x) y+3 x$
14) Solve the first order ODE $x y^{\prime}=\frac{2 \cos x}{x}-3 y$
15) Determine $\lim _{n \rightarrow \infty} n^{-\frac{1}{n}}$
16) Determine $\sum_{n=0}^{\infty}\left(1-(-1)^{n}\right)$
17) Determine $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
18) Determine $\sum_{n=0}^{\infty} n^{-\left(n+\frac{1}{n}\right)}$
19) Determine $\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{n^{n}}$
20) Determine $\sum_{n=0}^{\infty} \frac{2^{n+4}}{7^{n}}$
21) Find Maclaurin Series of $f(x)=\cos (3 x)$ and determine the interval of convergence
22) Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{3 n x^{n}}{12^{n}}$.
23) Change the parametric equation to $y=f(x) . \quad x(t)=5 \cos (t), y(t)=\sqrt{11} \sin t$
24) Find all points on the curve $x=t+\frac{1}{t}$ and $y=t-\frac{1}{t}$ that have slope $=1$.
25) Find $\frac{d^{2} y}{d x^{2}}$ of $x=\frac{1}{2} t^{2}, y=\frac{1}{3} t^{3}$
26) Find the rectangular coordinates of $r=4 \sin (\theta)$
27) Find the equation of the tangent line $r=3+\cos (2 \theta)$ at $\theta=\frac{3 \pi}{4}$.
