Final Practice

1) Find
$$\int_0^{\frac{\pi}{4}} e^{\cos^2(x)} \sin(x) \cos(x) \, dx$$

2)
$$\frac{d}{dx}\int_{x^2}^{\ln(x)}(4t+e^t)dt$$

- 3) The velocity of a bullet from a rifle can be approximated by v(t) = 6400t 2 6505t + 2686, where t is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first half-second after the shot: $0 \le t \le 0.5$. What is the total distance the bullet travels in 0.5 sec?
- 4) Find the area bounded by $y = x^2$ and $y = \sqrt{x}$. Also find the volume of the solid rotated along the x-axis.
- 5) Find the length of arc of y for $x = 3 \sqrt{y}$ from y = 0 to y = 4.
- 6) $\int e^x \sin x \, dx$
- 7) $\int \sin^2(x) \cos^2(x) \, dx$
- 8) $\int_{1}^{4} \frac{\ln\left(\frac{1}{x}\right)}{x} dx$
- 9) Approximate the integral $\int_{1}^{2} \sqrt{x^{5} + 2} dx$ using Simpson's Rule using for subintervals.
- 10) Suppose a rock falls from rest from a height of 100 meters and the only force acting on it is gravity. Find an equation for the velocity v(t) as a function of time, measured in meters per second.
- 11) Solve $y' = y(x^2 + 1)$
- 12) Solve xy' = y(x 2), with initial value y(1) = 3
- 13) Solve the first order ODE $y' = x \ln(x) y + 3x$

- 14) Solve the first order ODE $xy' = \frac{2\cos x}{x} 3y$ 15) Determine $\lim_{n \to \infty} n^{-\frac{1}{n}}$ 16) Determine $\sum_{n=0}^{\infty} (1 - (-1)^n)$ 17) Determine $\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$ 18) Determine $\sum_{n=0}^{\infty} n^{-(n+\frac{1}{n})}$ 19) Determine $\sum_{n=0}^{\infty} \frac{(-1)^n n!}{n^n}$ 20) Determine $\sum_{n=0}^{\infty} \frac{2^{n+4}}{7^n}$
- 21) Find Maclaurin Series of f(x) = cos(3x) and determine the interval of convergence
- 22) Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{3nx^n}{12^n}$.
- 23) Change the parametric equation to y = f(x). $x(t) = 5\cos(t)$, $y(t) = \sqrt{11}\sin t$
- 24) Find all points on the curve $x = t + \frac{1}{t}$ and $y = t \frac{1}{t}$ that have slope=1.
- 25) Find $\frac{d^2y}{dx^2}$ of $x = \frac{1}{2}t^2$, $y = \frac{1}{3}t^3$
- 26) Find the rectangular coordinates of $r = 4 \sin(\theta)$
- 27) Find the equation of the tangent line $r = 3 + \cos(2\theta)$ at $\theta = \frac{3\pi}{4}$.